Polymer-xerogel composites for controlled release wound dressings.
نویسندگان
چکیده
Many polymers and composites have been used to prepare active wound dressings. These materials have typically exhibited potentially toxic burst release of the drugs within the first few hours followed by a much slower, potentially ineffective drug release rate thereafter. Many of these materials also degraded to produce inflammatory and cytotoxic products. To overcome these limitations, composite active wound dressings were prepared here from two fully biodegradable and tissue compatible components, silicon oxide sol-gel (xerogel) microparticles that were embedded in tyrosine-poly(ethylene glycol)-derived poly(ether carbonate) copolymer matrices. Sustained, controlled release of drugs from these composites was demonstrated in vitro using bupivacaine and mepivacaine, two water-soluble local anesthetics commonly used in clinical applications. By systematically varying independent compositional parameters of the composites, including the hydrophilic:hydrophobic balance of the tyrosine-derived monomers and poly(ethylene glycol) in the copolymers and the porosity, weight ratio and drug content of the xerogels, drug release kinetics approaching zero-order were obtained. Composites with xerogel mass fractions up to 75% and drug payloads as high as 13% by weight in the final material were fabricated without compromising the physical integrity or the controlled release kinetics. The copolymer-xerogel composites thus provided a unique solution for the sustained delivery of therapeutic agents from tissue compatible wound dressings.
منابع مشابه
Tyrosine-derived polycarbonate-silica xerogel nanocomposites for controlled drug delivery.
Biodegradable polymer-ceramic composites offer significant potential advantages in biomedical applications where the properties of either polymers or ceramics alone are insufficient to meet performance requirements. Here we demonstrate the highly tunable mechanical and controlled drug delivery properties accessible with novel biodegradable nanocomposites prepared by non-covalent binding of sili...
متن کاملEarly Stage Treatment of Compartment Syndrome Using Polymer - Sol-gel Composite Growth Factor Delivery Wound Dressings
Compartment syndrome (CS) as a result of blast or traumatic injury is a devastating problem in the battlefield. The ultimate goal of this study is to develop an integrated toolkit of novel, biodegradable wound dressing composites for early stage treatment of CS. Composites made from the tyrosine-based block copolymers and silica based sol-gels were designed as an absorbent to remove fluid from ...
متن کاملProduction and Characterization of Gelatine Based Electro-spun Nano-fibres as Burn Wound Dressings
Silver sulfadiazine is used to prevent and treat infections of second- and third-degree burns. It kills a wide variety of bacteria. In this study silver sulfadiazine was used in gelatin based electro-spun nano-fibers with various drug to polymer ratios (0, 5, 10, 15 and 20 %). SEM, EDX and FTIR analysis showed that the continuous, bead-free, fine fibers containing silver sulfadiazine as an anti...
متن کاملSemi-IPN Films and Electrospun Nanofibers Based On Chitosan/PVA as an Antibacterial Wound Dressing
The antimicrobial activity of a wound dressing is a key factor for preventing and treating wound infection. The current study evaluated the physiochemical properties and antimicrobial activities of semi-IPNs (interpenetrating polymer networks) based on chitosan/polyvinyl alcohol (PVA) films and nanofibers as candidates for wound dressings and investigated the effects of morphologies (nanofibrou...
متن کاملSemi-IPN Films and Electrospun Nanofibers Based On Chitosan/PVA as an Antibacterial Wound Dressing
The antimicrobial activity of a wound dressing is a key factor for preventing and treating wound infection. The current study evaluated the physiochemical properties and antimicrobial activities of semi-IPNs (interpenetrating polymer networks) based on chitosan/polyvinyl alcohol (PVA) films and nanofibers as candidates for wound dressings and investigated the effects of morphologies (nanofibrou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 31 24 شماره
صفحات -
تاریخ انتشار 2010